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SUMMARY

The Euler equations are solved for non-hydrostatic atmospheric flow problems in two dimensions
using a high-resolution Godunov-type scheme. The Riemann problem is solved using a flux-based wave
decomposition suggested by LeVeque. This paper describes in detail, the design and implementation of
the Riemann solver used for computing the Godunov fluxes. The methodology is then validated against
benchmark cases for non-hydrostatic atmospheric flows. Comparisons are made with solutions obtained
from the National Center for Atmospheric Research’s state-of-the-art numerical model. The method shows
promise in simulating non-hydrostatic flows, which are characterized by steep gradients on the meso-,
micro- and urban-scales. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Godunov-type methods [1, 2] have gained wide popularity in the scientific computing community
for solving the systems of hyperbolic conservation laws. Godunov’s unique approach to numerical
modelling of fluid flow is characterized by introducing physical reasoning in the development
of the numerical scheme [3]. The construction of the scheme itself is based upon the physical
phenomenon described by the equation sets. These finite volume discretizations are conservative
and have the ability to resolve regions of steep gradients accurately, thus avoiding dispersion
errors in the solution. Positivity of scalars (an important factor when considering the transport of
micro-physical quantities) is also guaranteed by applying the total variation diminishing (TVD)
condition appropriately.
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In recent years, there has been a growing interest in using Godunov-type methods for atmospheric
flow problems. Ahmad et al. [4] have implemented a Godunov-type scheme with the Harten-Lax–
van Leer-contact (HLLC) approximate Riemann solver [5] for the Euler as well as Navier–Stokes
equations on unstructured adaptive grids. Botta et al. [6] have simulated gravity waves forming
over mountains. Carpenter et al. [7] have applied the method for atmospheric flows using an
exact Riemann solver in conjunction with the piecewise parabolic method (PPM) [8]. Carpenter
et al. [7] show the inherent strengths of Godunov-type methods by providing a comparison with the
multi-dimensional positive definite advection transport algorithm (MPDATA) [9] and the Leapfrog
scheme. The important role Godunov-type methods can play in accurately resolving atmospheric
phenomena characterized by steep gradients is also pointed out.

Hurricanes, tornadoes, fronts, drylines, micro-bursts and inversions are some examples of atmo-
spheric processes, which have strong gradients of velocities, temperature and potential temperature.
Fronts, for example, have large horizontal temperature and wind gradients and vertical wind shear.
Strong convection in supercell thunderstorms can produce tornadoes, winds up to ∼ 50 ms−1,
lightning and flash floods [10]. Drylines [11] are characterized by a strong moisture gradient in the
planetary boundary layer (e.g. in the Great Plains this gradient can be up to several degrees Celsius
which is much larger than the climatological average of 0.04◦Ckm−1 in the dewpoint temperature).
Drylines can trigger strong convective activity and winds in excess of 50 miles per hour have been
observed [11]. In tornadoes (F5 category), winds between 125 and 140ms−1 have been observed.
Hurricanes are yet another example of an atmospheric process which is characterized by extreme
gradients of velocities and potential temperature [12].

Traditionally, the centred finite difference schemes such as the Leapfrog scheme have been
favoured for discretizing the atmospheric flow equation set. These types of schemes exhibit dis-
persion errors (non-physical spurious oscillations), which can contaminate the numerical results
[7]. At smaller spatial and temporal scales (e.g. non-hydrostatic meso-scale flows), large gradients
of velocities and other physical quantities can develop, which create stability problems for centred
schemes. The application of the Leapfrog scheme on smaller scales also requires explicit time
filtering for stability. The Asselin time filter, which is often used, degrades the accuracy of the
scheme in time [13, 14]. Furthermore, the scheme can introduce false negatives in important scalar
micro-physical quantities. To avoid false negatives, either positive definite schemes [9, 15] or flux
corrected transport (FCT)-type schemes [16, 17] are often used to advect scalar quantities, while
the flow solver uses centred finite differences. The upwind-biased finite difference flow solvers,
which have been implemented in atmospheric models, normally do not enforce the TVD condition
[18]. The one notable exception is the MPDATA scheme [9, 19–21], which is sign preserving in
its basic form and can be made TVD by the appropriate use of limiters.

In this study, a Godunov-type scheme suggested by LeVeque for hyperbolic conservation laws
with spatially varying flux functions [22, 23] is adapted for atmospheric flow problems. The scheme
employs flux-based wave decompositions (f-waves) for the solution of Riemann problem and does
not require the explicit definition of the Roe matrix [24] to enforce conservation. This is an important
property in the context of atmospheric flows since the Roe matrix for hyperbolic conservation laws
governing atmospheric flows is not readily available. The other important feature of the scheme
is its ability to incorporate source term due to gravity without introducing discretization errors.
Again, in the context of atmospheric flows, this is an important advantage. In the following
sections, the development of the Riemann solver and its implementation within the Conservation
Laws Package (CLAWPACK) is described in detail. The numerical scheme is evaluated against
benchmark test cases and a comparison is made with the results obtained from the National Center
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for Atmospheric Research’s state-of-the-art numerical model (the Weather Research and Forecast
model—also known as the ARW-WRF model).

2. GOVERNING EQUATIONS

The basic equations governing atmospheric flows comprise a set of partial differential equations
for the conservation of mass, the conservation of momentum, the conservation of energy and an
equation of state to close the system. The 2D Navier–Stokes equations governing atmospheric
flows are written in the conservative form (e.g. see [18, 19, 25, 26]) as

�U
�t

+ �F
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+ �G
�y

= Q + D (1)

where,
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(2)

In the above relations, � is the density of fluid, u is the velocity component in the x-direction, v
is the velocity component in the y-direction and p is the pressure. If a parcel of air at temperature T
and pressure p is subjected to an adiabatic compression or expansion to a final reference base-state
pressure (p0 = 105 Pa), then its potential temperature, �, is given by

� = T

(
p0
p

)Rd/cp
(3)

The system is closed by an equation of state for pressure

p=C0(��)� (4)

where C0 is a constant given by

C0 = R�
d

pRd/Cv

0

(5)

In the above relations, �(=Cp/Cv = 1.4) is the ratio of specific heats, Rd(= 287 JK−1 kg−1) is
the gas constant for dry air, p0 is the base state pressure (= 105 Pa). Cp(= 1004 JK−1 kg−1) and
Cv(= 717 JK−1 kg−1) are the specific heats of air at constant pressure and volume, respectively.
In Equation (1), Q is the source term and D is the diffusive flux term. The source term can be
complex for atmospheric processes, and apart from body forces, may include terms for the heat
sinks and sources produced due to the diurnal cycle of Earth, as well as micro-physical processes
of cloud formations and dissipations. For the purpose of this study, a simplified source term will
be used. Atmosphere is assumed to be dry and the only source term is the gravitational force
acting in the vertical direction. Diffusion processes are also ignored and only the Euler solutions
are considered.
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3. NUMERICAL SCHEME

The Riemann solver presented in this paper has been implemented within the CLAWPACK soft-
ware. CLAWPACK is a general purpose and open-source software developed at the University of
Washington, Seattle, by LeVeque [22]. The software implements high-resolution Godunov-type
methods, which are explained in detail by LeVeque [22, 27–29]. The user has to provide the
Riemann solver for the particular hyperbolic partial differential equation (there are several ex-
amples of Riemann solvers in the standard source distribution of CLAWPACK). The user also
needs to provide the routines for model initialization and the addition of source terms, if any.
The subroutines for dimensional-splitting, extensions for second-order accuracy and various lim-
iter functions, etc. are provided in CLAWPACK. The user can also provide additional code for
boundary conditions and add new limiter functions. In general, the software can be used to solve
any hyperbolic partial differential equation set as long as its complete eigenstructure is known
and the user provides the appropriate Riemann solver for it. Versions of CLAWPACK based on
message passing interface (MPI) for distributed computing and adaptive mesh refinement (AMR)
for computational efficiency, are also freely available.

In this section, a brief description of the base-line methodology implemented in CLAWPACK is
given and the Riemann solver designed for the atmospheric flow equations is described in detail.
The solution of the Riemann problem across each interface of a cell is a one-dimensional problem.
Therefore, the basic algorithm is first described in one-dimension. The Euler equations (1)–(2) in
one dimension can be written in the discrete form as

Un+1
i =Un

i − �t

[
1

�x
(Fi+1/2 − Fi−1/2)

]
(6)

where U is the vector of conserved quantities, F is the vector of intercell fluxes calculated at the
control surface of each control volume using either an exact or approximate Riemann solver. �t
and �x are the time step and mesh resolution in x-direction, respectively. In Godunov-type solvers,
the jump in U at cell centres is usually decomposed as a linear combination of the eigenvectors,
r pi−1/2 to obtain the waves, W p

i−1/2:

Ui −Ui−1 =
m∑
p=1

�p
i−1/2r

p
i−1/2 ≡

m∑
p=1

W p
i−1/2 (7)

The coefficients, �p
i−1/2, in Equation (7) are given by

�p
i−1/2 = R−1

i−1/2(Ui −Ui−1) (8)

where Ri−1/2 is the matrix of right eigenvectors. The conservation is enforced by the following
condition:

Ai−1/2(Ui −Ui−1) = F(Ui ) − Fi−1(Ui−1) (9)

where, Ai−1/2 is the Roe-averaged Jacobian [24]. Instead of solving the Riemann problem using
the decomposition in Equation (7), LeVeque [22] and Bale et al. [23] suggest using a flux-based
wave decomposition, in which the flux differences Fi (Ui ) − Fi−1(Ui−1) are written directly as a

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:47–72
DOI: 10.1002/fld



EULER SOLUTIONS USING FLUX-BASED WAVE DECOMPOSITION 51

linear combination of the right eigenvectors r pi−1/2:

Fi (Ui ) − Fi−1(Ui−1) =
m∑
p=1

�p
i−1/2r

p
i−1/2 ≡

m∑
p=1

Z p
i−1/2 (10)

and

�i−1/2 = R−1
i−1/2(Fi (Ui ) − Fi−1(Ui−1)) (11)

The vectors Z p = �pr p are called f -waves and contain flux increments rather than increments
in U . In the presence of a source term, �= �g, the algorithm can be extended by first setting the
source term values �i−1/2 at the control surfaces and then defining the f -waves Z p

i−1/2 as follows:

Fi (Ui ) − Fi−1(Ui−1) − �x�i−1/2 =
m∑
p=1

�p
i−1/2r

p
i−1/2 ≡

m∑
p=1

Z p
i−1/2 (12)

�i−1/2 = R−1
i−1/2(Fi (Ui ) − Fi−1(Ui−1) − �x�i−1/2) (13)

The correction for source term due to gravity in Equations (12)–(13) is applied only at the
interior edges/faces. Equation (6) can now be re-written as

Un+1
i =Un

i − �t

�x
[H+�Ui−1/2 + H−�Ui+1/2] (14)

where

H−�Ui−1/2 =∑
p
Z p
i−1/2 if s pi−1/2<0 (15)

and

H+�Ui−1/2 =∑
p
Z p
i−1/2 if s pi−1/2>0 (16)

H−�Ui−1/2 and H+�Ui−1/2 are the fluctuations which contribute to the cell-averaged quantity
Ui due to the wave propagation across the cell interfaces. In the above relations, s pi−1/2 are the
wave speeds given by the eigenvalues of the hyperbolic equation set. Higher-order accuracy in
space can be achieved by adding a correction term [22, 29]:

Un+1
i =Un

i − �t

�x
[H+�Ui−1/2 + H−�Ui+1/2] − �t

�x
[F̃i+1/2 − F̃i−1/2] (17)

where

F̃i−1/2 = 1

2

m∑
p=1

sgn(s pi−1/2)

[
1 − �t

�x
|s pi−1/2|

]
Z̃i−1/2 (18)

and, Z̃ p is the limited value of Z p. Bale et al. [23] have shown the above algorithm to be second-
order accurate in space and time. The details on the implementation of wave limiters can be found
in LeVeque [22, 29]. Apart from the advantages of using Godunov-type schemes, mentioned earlier
(conservation, ability to simulate regions of sharp gradients, etc.), the other important features of
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LeVeque’s algorithm in the context of atmospheric flows are:

• The ease with which source term due to gravity can be included without introducing dis-
cretization errors.

• The method is attractive since the Roe matrix for the system of equations in Equations (1)–(5)
is not readily available.

In recent years, there has been a growing interest in developing multi-dimensional Riemann
solvers (e.g. see [30]). This research, however, is still in its infancy and most Godunov-type codes
for multi-dimensional problems are based on the solution of the one-dimensional Riemann problem
across each cell interface. It has been shown [27, 28, 31] that the multi-dimensional information
can be included into the solution even though the calculation of the Riemann problem is only one
dimensional. The simplest way to extend the algorithm for multi-dimensional problems is by the
dimensional-splitting technique, in which individual sweeps are performed in each spatial direction
in succession. A better algorithm [27] takes into account contributions of wave fluctuations in the
transverse direction.

3.1. Eigenvalues and right eigenvectors of the Euler equations governing atmospheric flows

In the Riemann solution suggested by LeVeque, it is assumed that the right eigenvectors and
eigenvalues of the conservation laws can be obtained from an approximate Jacobian matrix. The
eigenspace for the system of hyperbolic equations governing atmospheric flows in two dimensions
is given in this section. Consider the homogeneous part of Equations (1)–(2), then the Jacobian
A(U ) corresponding to F(U ) in Equation (1) can be written as

A(U ) =
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⎤
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The eigenvalues of the matrix A(U ) in Equation (19) are u, u, u + a and u − a, where a is the
speed of sound. The right eigenvectors of the matrix are as follows:

u − a :

⎡
⎢⎢⎢⎢⎢⎣
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Similarly, the Jacobian, A(U ) corresponding to G(U ) in Equation (1) is given by

A(U ) =

⎡
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The eigenvalues and the corresponding right eigenvectors of the Jacobian in Equation (22) are

v − a :
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3.2. The Riemann solver in the normal direction

Consider the matrix of right eigenvectors R (each column is a right eigenvector), for A(U )

corresponding to F(U ) in Equation (19), then the matrix R and its inverse R−1 (the inverse matrix
R−1 is the matrix of left eigenvectors in which each row is a left eigenvector) can be written as

R =
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(24)
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The �i coefficients can now be calculated using Equation (11) by simply multiplying the inverse
of the matrix of right eigenvectors with the vector containing the jumps in fluxes:

⎡
⎢⎢⎢⎢⎢⎣
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⎤
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where the jumps, �Fi , in the flux functions are given by

⎡
⎢⎢⎢⎢⎢⎣
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The superscript j in Equation (26) implies the component of the momentum equation (in x- or
y-direction) and the subscript i denotes the cell number. The source term due to gravity is added
when the Riemann problem is solved for the sweep in the y-direction:

�F2 =�F2 + 0.5�yg[�ri−1 + �li ] (27)

where g is the acceleration due to gravity. The pressure in Equation (26) is calculated using the
equation of state given by Equations (4)–(5). Once the �i coefficients have been calculated, the
f-waves, Zp = �prp can be computed as follows:
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Given the f-waves and the wave speeds (u−a, u, u, u+a), the flux differences can be computed
by summing up the left and right going waves across a cell interface using Equations (15)–(16).
In the above relations, the sweep in x-direction is implied. Computations in the y-direction would
require interchanging u and v momentums. The quantities on cell faces are calculated by taking
the average of cell-centred quantities on the either side of the face.

3.3. The Riemann solver in the transverse direction

The solution of Riemann problem in the transverse direction is analogous to the solution in the
normal direction. The �i coefficients are calculated by replacing in Equation (25) the jumps in flux
functions, �Fi by the fluctuations H−�Ui−1/2 and H+�Ui−1/2. The waves can now be computed
as follows:

v − a :
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⎢⎢⎢⎢⎢⎢⎣
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⎡
⎢⎢⎢⎢⎢⎢⎣
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1 + Z3

1

Z2
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2
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3
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4

⎤
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⎡
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�3

�2

�3v

0

⎤
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⎡
⎢⎢⎢⎢⎢⎢⎣

Z4
1

Z4
2

Z4
3

Z4
4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

�4

�4u

�4(v + a)

�4�

⎤
⎥⎥⎥⎥⎥⎦ (29)

where all waves at speed v have been summed up, since only the fluctuations are required. In all
of the computations presented below, the Riemann problem in both the normal and the transverse
directions was solved. The solution of the Riemann problem in the transverse direction allows
larger time steps and a CFL of 0.9 was used for all simulations. It also increases the accuracy
of the solution by taking into account the contributions of each wave in the transverse direction.
The use of the terms ‘normal direction’ and ‘transverse direction’ is with respect to the control
surfaces.

3.4. Extension of the solver to the third spatial dimension

The Riemann solver presented here can be extended to the third spatial dimension, if the wave
structure is known for the equation set in three dimensions. The complete eigenspace of the
hyperbolic partial differential equations governing atmospheric flows in three dimensions is given
in Appendix A. The implementation of the algorithm in three dimension, using dimensional
splitting would be straightforward (in each step a sweep of calculations is performed in the x-
direction and then a similar sweep in y-direction is applied). However, if the corrections in the
transverse direction are taken into account, then the implementation may become involved and/or
computationally expensive. LeVeque [29] notes, that for some three-dimensional problems, using
dimensional splitting may be more efficient computationally.
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4. RESULTS

In this section, the proposed scheme is evaluated against different benchmark cases. In the absence
of closed-form solutions for Equations (1)–(5), the dynamical cores of atmospheric flow models
are usually evaluated in qualitative terms. A series of test cases have been developed over the
years, and the results of four of these tests are presented below—the propagation of inertia–gravity
waves on non-hydrostatic scales, the convection of a warm bubble in neutral atmosphere and two
variations of non-linear density currents. To better gauge the performance of the Godunov-type
scheme, the results of the first two test cases are compared with the solutions obtained from the
National Center for Atmospheric Research’s state-of-the art WRF model.

4.1. Non-hydrostatic inertia-gravity waves

The Skamarock–Klemp [32] test for simulating inertia–gravity waves on the non-hydrostatic scale
is described in this section. The domain was bounded within [0:300.0 km] × [0:10.0 km]. The
model was tested for different mesh resolutions—varying from 1km to 500m in the horizontal and
100 to 50 m in the vertical. Periodic boundary conditions were used in the lateral and the top and
bottom boundaries were set to solid walls. The domain was initialized by a constant Brunt–Väisälä
frequency N = 10−2 s−1. The waves were excited by an initial potential temperature perturbation
given by

�(x, y, 0) =��0
sin(�y/H)

1 + (x − xc)2/a2
(30)

The amplitude of the initial potential temperature perturbation, ��0 was set to 10−2 K. The
height H of the domain was 10 km, the perturbation half width was a = 5 km. The perturbation
was initialized at xc = xmax/3, where, xmax is the width of the domain (300 km). A uniform
u-velocity of 20 m/s was imposed in the domain and the v-velocity was set to zero. The model
was run for time= 3000 s.

The ARW-WRF (version 2.1.2) model [18] was used to run the non-hydrostatic inertia gravity
wave case for comparison with the proposed Godunov-type scheme. The WRF simulations were
run using different orders of advection. The first simulation employed a second-order centred
finite difference scheme in the horizontal and vertical, while the second simulation had fifth-order
horizontal and third-order vertical advection (generally recommended by the developers of WRF).
Note that the upwind-biased schemes in the WRF model do not enforce the TVD condition and,
therefore, are susceptible to spurious oscillations. The solution is integrated in time using an
explicit multi-stage Runge–Kutta time-marching scheme [33, 34]. In the WRF runs, the Coriolis
parameter was set to zero. WRF’s lower boundary was set to free-slip, and the upper boundary
employed a vertical velocity= 0 at a constant pressure level. Periodic boundary conditions were
set in the lateral. Horizontal grid spacing was 1000 m, and the vertical grid spacing was set such
that the interval was roughly 100 m for the baseline case. The mesh resolution in the vertical was
adjusted accordingly for the high-resolution run. The turbulent diffusion was turned off, and no
wave-absorbing sponge layer was used in the upper part of the computational domain.

The potential temperature perturbation field and the vertical velocity for the Godunov-type
scheme, after 3000 s into the simulation are shown in Figures 1 and 2, respectively. The mesh
resolution in this simulation was set to 500m in the horizontal and 50m in the vertical. Note that the
simulation results are slightly different from the analytical solution given in Skamarock and Klemp
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Figure 1. Non-hydrostatic inertia–gravity waves. Potential temperature perturbation (K) field after 3000 s
into the simulation. Note that the x-axis has been scaled by a factor of 10 for plotting purposes. The

actual domain bounds in x-direction are 0:300 km. �x = 500 m and �y = 50 m. Godunov solution.

Figure 2. Non-hydrostatic inertia–gravity waves. v-velocity (m/s) field after 3000 s into the simulation.
Note that the x-axis has been scaled by a factor of 10 for plotting purposes. The actual domain bounds

in x-direction are 0:300 km. �x = 500 m and �y = 50 m. Godunov solution.

[32]. This is because the analytical solution in Skamarock and Klemp [32] assumes a Boussinesq
atmosphere and the computed results presented here are obtained from a fully compressible flow
model. However, the results compare well with the solutions from the WRF model which also
computes the fully compressible equation set given by Equations (1)–(5). Figures 3 and 4 show
the comparison of the proposed Godunov-type scheme with the WRF second-order centred and
the fifth-order upwind-biased schemes at time= 3000s. The solution obtained from the WRF fifth-
order scheme is considered as the reference solution and is given by the solid line in Figures 3
and 4—the mesh resolution for the fifth-order WRF reference solution was 1 km in the horizontal
and 100 m in the vertical. The high-resolution Godunov-type scheme compares well with the
reference solution as well as the WRF second-order scheme. Some numerical diffusion is present
in the low-resolution run but that is overcome by increasing the mesh resolution. Furthermore,
it does not exhibit dispersion and phase errors apparent in the WRF second-order solution. For
the Godunov-type scheme, it should be noted that if the vertical mesh resolution is too coarse
(approximately >200m), then errors start to accumulate at the lower and upper domain boundaries
due to source term balancing. Since, the proposed scheme is meant for flows on high-resolution
meshes (where centred finite difference schemes can break down), this would not be an issue of
concern. It may be possible to avoid these errors by using a stretched grid (the vertical mesh
resolution in the surface layer is typically ∼ 20 m for stretched grids) near both upper and lower
domain boundaries, but that needs to be tested.
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Figure 3. Non-hydrostatic inertia–gravity waves. Comparison of the Godunov-type scheme with the
fifth-order and second-order WRF schemes. Theta perturbation (K) values between x = 0 and 300 km,
for y = 5 km. 300× 100 (�x = 1000 m and �y = 100 m) in the legend refer to number of cells in

x- and y-direction, respectively.

Figure 4. Non-hydrostatic inertia–gravity waves. Comparison of the Godunov-type scheme with the
fifth-order and second-order WRF schemes. Theta perturbation (K) values between x = 0 and 300 km,
for y = 5 km. 600× 200 (�x = 500 m and �y = 50 m) and 300× 100 (�x = 1000 m and �y = 100 m)

in the legend refer to number of cells in x- and y-direction, respectively.
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4.2. Convection in neutral atmosphere

The convection in neutral atmosphere is a popular test case for validating numerical schemes for
atmospheric flow simulations (e.g. [4, 7, 26, 34, 35]). In the absence of an analytical solution, the
test can evaluate the scheme only in qualitative terms. This evaluation, however, provides valuable
information on the scheme’s ability to simulate the fundamentals of atmospheric thermodynamics
and dynamics.

The domain for this case was bounded within [0:20.0 km] × [0:10.0 km]. The mesh resolution
was set to 125 m. Farfield/outflow boundary conditions were used in the lateral and the top and
bottom boundaries were set as solid walls. The domain was initialized for a neutral atmosphere
at �i = 300 K in hydrostatic balance. The initial u-velocity and the v-velocity were set to zero. A
potential temperature perturbation in the form of a linear function was initialized at xb = xmax/2
and yb = 2000 m:

�(x, y)= �i + ��

(
1.0 − L

R

)
if L�R (31)

where

L =
√

(x − xb)2 + (y − yb)2 (32)

The potential temperature perturbation maximum �� had a value of 2 K. The radius, R, of
the perturbation was set to 2000 m. The model was run for time= 1020 s (17 min). The domain
configuration is same as the one used in Wicker and Skamarock [34]—the only difference is that
final time of the simulation was increased to 1020 s (17 min) from 1000 s, since the WRF output
is in multiples of minute. The monotonized-centred (MC) limiter was used to enforce the TVD
condition. The initial potential temperature field and the simulation results after time= 1020 s are
shown in Figure 5 along with results from the WRF model.

The WRF set-up for this case was similar to the inertia–gravity wave case described in the
previous section, except for the lateral boundary conditions (outflow boundary conditions were
specified instead of periodic). The horizontal and vertical mesh resolutions for the WRF model
were set to 125 m, but it should be noted that the vertical mesh resolution in metres is only an
approximation. Since WRF uses a mass-based vertical coordinate system, the height of the vertical
levels change with each time step. The time step in WRF simulations is a user input (rather
than a calculation within the time loop) and it was set to 0.25 s. The WRF model employs an
Arakawa-C staggered grid, where the geo-potential is collocated with the vertical velocity points.
The geo-potential levels are used to obtain the Cartesian height. For post-processing of the data, the
geo-potential and the velocity components are linearly interpolated to the mass coordinate points
where the potential temperature is defined. Linear interpolation is then done to place these values
on a new grid with constant height surfaces. One complication is the lowest surface on the new
grid, which is 0 m in the vertical direction. This is below the lowest potential temperature surface
in the WRF output files. For this test case, the value of potential temperature at height= 0 m is
set to the potential temperature value at the lowest corresponding level in the WRF output.

The introduction of the thermal in the domain generates large acceleration in the centre of
the bubble accompanied by downdrafts on the either side of the bubble. Since, the temperature
distribution inside the bubble is linear (highest temperature at the centre) the centre of the bubble
rises faster. This creates sharp gradients of temperature in the upper part of the bubble [26]. As the
bubble rises, the initial symmetry of the flow field is broken and an off-axis maximum of buoyancy

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:47–72
DOI: 10.1002/fld



60 N. AHMAD AND J. LINDEMAN

Figure 5. Convection in neutral atmosphere. Initial conditions (top-left). Godunov solution (top-right),
WRF fifth-order solution (bottom-left), and WRF second-order solution at time= 1020 s (bottom-right).

is created [7]. The results can be compared with, e.g. the Wicker and Skamarock [34] solution,
which exhibits spurious oscillations in the potential temperature field. These oscillations are typical
of the centred finite difference schemes. The high-resolution Godunov solution presented here, on
the other hand, is devoid of these oscillations. The second-order WRF scheme became unstable
for this test case and a constant diffusion (with K = 15 m2/s) was added to stabilize the solution
(shown in Figure 5). The vertical velocity acceleration and the thermal energy dissipation rates for
the three models are quite similar and can be seen in the time histories plotted in Figure 6. WRF
outputs data at 1 min increments and, therefore, only 17 data points were available for WRF time
histories. Figure 7 shows the velocity fields obtained from the Godunov scheme after time= 1020s
into the simulation.

4.3. Modified Straka density current

The density current benchmark suggested by Straka et al. [36] is often used to evaluate the
dynamical cores of atmospheric flow models. In this section, a modified Straka [36] benchmark is
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Figure 6. Convection in neutral atmosphere. Time history of domain maximum potential temperature
perturbation (left) and the domain maximum vertical velocity (right) are shown in the figure.

Figure 7. Convection in neutral atmosphere. u-velocity in m/s (top) and v-velocity in m/s
(bottom) at simulation time= 1020 s.
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simulated with the following difference. Since only Euler solutions are considered in this study,
the constant diffusion (with K = 75 m2/s) is not added. See Appendix B for the actual Straka
benchmark.

The domain in this case was bounded within [−26.5 km:26.5 km] × [0:6.4 km]. The mesh
resolution was set to 50 m in both the x- and y-directions. Farfield/outflow boundary condi-
tions were used in the lateral and the top and bottom boundaries were set as solid walls. The
domain was initialized for a neutral atmosphere at 300 K in hydrostatic balance. The initial u-
velocity and the v-velocity were set to zero. A cold bubble was initialized using the following
relation:

�� =

⎧⎪⎨
⎪⎩
0.0 if L>1.0

−15.0

[
cos(�L) + 1.0

2

]
if L�1.0

(33)

where

L =
√(

x − xc
xr

)2

+
(
y − yc
yr

)2

(34)

where, xc = 0.0km, yc = 3.0km, xr = 4.0km and yr = 2.0km. The simulation was run for 900s. The
MC limiter was used to enforce the TVD condition. The potential temperature fields at different
simulation times (time= 300, 600 and 900 s) are shown in Figure 8. Only the right half of the
computational domain is shown in the figures.

The test case can be considered as an idealized micro-burst. As the cold air descends due to
negative buoyancy, strong downdrafts develop at the centre of the cold bubble. When the cold
air reaches the ground, it is rolled up and a front is formed. As this front propagates, shear is
generated at the top boundary of the front. The benchmark solution [36] consists of three rotors,
which develop at the top boundary of the front due to the Kelvin–Helmholtz-type instability.
The formation and the propagation of the front and the development of these rotors can be seen
in Figure 8. The final front location is also indicated in Figure 8, which compares well with
the solutions given in Straka et al. [36]. The front location (in terms of potential temperature)
at 14 975 m corresponds to the cell with a potential temperature value of 299.99 K—the value
of potential temperature in the cell next to it (at 15 025 m) is 300.0 K. The WRF second-order
simulation (not shown here) became unstable for this test case also—but the addition of explicit
diffusion stabilized the solution.

4.4. Droegemeier density current

The density current benchmark suggested by Straka et al. [36] is based on a numerical experiment
designed by Droegemeier [7, 37]. In this section, the simulation of Droegemeier’s experiment is
described. The domain in this case was bounded within [0 km:25.0 km] × [0:10.0 km]. The mesh
resolution was set to 50 m in both the x- and y-directions. Farfield/outflow boundary conditions
were used in the right lateral boundary and the left lateral boundary was set to wall. The top
and bottom boundaries were also set as solid walls. The domain was initialized for a neutral
atmosphere at 300 K in hydrostatic balance. The initial u-velocity and the v-velocity were set to
zero. A cold pool of air was initialized between [0:5000m]× [0:5000m], which linearly decreased
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Figure 8. Density current (after Straka et al.). Potential temperature (K) fields at time= 300, 600, and
900 s are shown. The location of the front at time= 900 s is also given. Only a part of the right half of
the computational domain is shown in the figures. The formation of a front can be seen at time= 300 s.
The propagation of this front generates large amount of shear in the flow. The development of rotors due

to Kelvin–Helmholtz-type instability can be seen at time= 600 and 900 s.

in temperature to 290 K at the surface (see Figure 9). The simulation was run for time= 900 s.
The MC limiter was used to enforce the TVD condition.

Like in the previous density current case, the negative buoyancy sets the pool of cold air in
a downward motion, and as this cold air descends, a front is formed, which propagates forward.
This forward motion of the cold front generates shear at the top boundary of the front, resulting
in Kelvin–Helmholtz waves. The propagation of front and the formation of these waves can be
seen at time= 450 and time= 900 s into the simulation (Figure 9). Note that this is also an
Euler solution and again no diffusion was added in the simulation. A qualitative comparison
can be made with the solutions (PPM and centred finite difference scheme) given by Carpenter
et al. [7].
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Figure 9. Density current (after Droegemeier and Wilhelmson). Potential temperature (K) fields at
time= 0, 450 and 900 s are shown. The actual domain extends to 25 km in the x-direction.

5. CONCLUSIONS

A high-resolution Godunov-type scheme based on flux-based decomposition of waves after
LeVeque is suggested for simulating atmospheric flow problems. Benchmark problems for the
non-hydrostatic atmosphere were simulated for the validation of the scheme and the results are
quite encouraging. Godunov-type high-resolution methods offer an attractive alternative for sim-
ulating atmospheric flows on the meso-, micro-, and urban-scales, which are characterized by
steep gradients (micro-bursts, tornadoes, hurricanes, accidental or intentional release of hazardous
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materials in an urban area, etc.). These finite volume discretizations are conservative and have
the ability to resolve regions of steep gradients accurately, thus avoiding dispersion errors in the
solution. Numerical diffusion (implicit in all upwind schemes) can be overcome by higher-order
extensions or using solution-adaptive methods. The positivity of scalars is also achieved by the
appropriate use of limiters. A comparison with the National Center for Atmospheric Research’s
state-of-the-art WRF model showed that the high-resolution Godunov-type scheme performs well
for flows in which sharp gradients can develop. For example, the WRF second-order scheme
becomes unstable if large gradients are present in the solution (density current and convection in
neutral atmosphere cases) and requires explicit filtering for stability. Although the study demon-
strates the viability of using Godunov-type schemes for atmospheric flow simulations, much can
be done to further improve the methodology presented here, such as inclusion of more physics
(turbulence closure, surface layer physics, micro-physics, radiation transfer, etc.). The scheme can
be implemented on unstructured grids and that is another avenue for future extensions.

APPENDIX A

The eigenstructure for the three-dimensional Euler equations is given in this Appendix. The
homogeneous Euler equations governing atmospheric flows can be written as

�U
�t

+ �F
�x

+ �G
�y

+ �H
�z

= 0 (A1)

where

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

�w

��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u

�u2 + p

�uv

�uw

u��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v

�uv

�v2 + p

�vw

v��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�w

�uw

�vw

�w2 + p

w��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

In the above relations, � is the density of fluid, u is the velocity component in the x-direction, v
is the velocity component in the y-direction, w is the velocity component in the z-direction, p is
the pressure and � is the potential temperature. The Euler equations can be written in a quasi-linear
form as

Ut + A(U )Ux + B(U )Uy + C(U )Uz = 0 (A3)

The subscripts t , x , y and z denote the derivatives in time and space. A(U ), B(U ) and C(U )

are the coefficient Jacobian matrices. The system in Equation (A3) is hyperbolic, if the matrices
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A(U ), B(U ) and C(U ) can be diagonalized and have real eigenvalues. A(U ), e.g. can be written
as

A(U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� f1
�u1

� f1
�u2

� f1
�u3

� f1
�u4

� f1
�u5

� f2
�u1

� f2
�u2

� f2
�u3

� f2
�u4

� f2
�u5

� f3
�u1

� f3
�u2

� f3
�u3

� f3
�u4

� f3
�u5

� f4
�u1

� f4
�u2

� f4
�u3

� f4
�u4

� f4
�u5

� f5
�u1

� f5
�u2

� f5
�u3

� f5
�u4

� f5
�u5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A4)

where

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

�u

�v

�w

��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and F(U )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

f5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2

u22
u1

+ C0u
�
5

u2u3
u1
u2u4
u1
u2u5
u1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A5)

The elements of the matrix in Equation (A4) can be found after some algebraic manipulations,
e.g.

� f2
�u1

= �
�u1

[
u22
u1

+ C0u
�
5

]
= − u22

u21
=

[
−�u�u

��

]
= − u2 (A6)

� f2
�u2

= �
�u2

[
u22
u1

+ C0u
�
5

]
= 2u2

u1
= 2�u

�
= 2u (A6a)

� f2
�u3

= �
�u3

[
u22
u1

+ C0u
�
5

]
= 0 (A6b)

� f2
�u4

= �
�u4

[
u22
u1

+ C0u
�
5

]
= 0 (A6c)
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� f2
�u5

= �
�u5

[
u22
u1

+ C0u
�
5

]
= �C0u

�−1
5 =

[
�C0(��)�

��

]
= �p

��
= a2

�
(A6d)

and

� f3
�u1

= �
�u1

[
u2u3
u1

]
= − u2u3

u21
= − �u�v

��
= − uv (A6e)

� f3
�u2

= �
�u2

[
u2u3
u1

]
= u3

u1
= �v

�
= v (A6f)

� f3
�u3

= �
�u3

[
u2u3
u1

]
= u2

u1
= �u

�
= u (A6g)

� f3
�u4

= �
�u4

[
u2u3
u1

]
= 0 (A6h)

� f3
�u5

= �
�u5

[
u2u3
u1

]
= 0 (A6i)

where a is the speed of sound. The remaining terms in Equation (A4) can be found in a similar
manner. The matrix in Equation (A4) simplifies to

A(U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

−u2 2u 0 0 a2/�

−uv v u 0 0

−uw w 0 u 0

−u� � 0 0 u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

The eigenvalues and eigenvectors corresponding to the Jacobian matrix A(U ) in Equation (A7)
are

u − a :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u − a

v

w

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, u + a :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

u + a

v

w

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A8)
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The matrix of right eigenvectors can now be written as

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1

u − a u 0 0 u + a

v 0 1 0 v

w 0 0 1 w

� 0 0 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A9)

The inverse of the matrix in Equation (A9) is given by

R−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

2a
− 1

2a
0 0

1

2�

1 0 0 0 −1

�

0 0 1 0 −v

�

0 0 0 1 −w

�

− u

2a

1

2a
0 0

1

2�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A10)

The eigenvalues and eigenvectors corresponding to B(U ) and C(U ) in Equation (A3) can be
found in a similar manner. Once the complete wave structure is known, the algorithm described
in this paper can be extended to the third spatial dimension.

APPENDIX B

The focus of this paper has been on the simulation of Euler equations. It is, however, also necessary
to gauge the performance of the proposed scheme when the diffusion operator is included in the
solution. The actual Straka non-linear density current benchmark [36] is described in this Appendix
for the sake of completeness.

The domain in this case was bounded within [−20.0 km:20.0 km] × [0:6.4 km]. Note that the
outflow boundaries in the lateral do not need to be placed too far away, since, the problem of wave
reflection at the farfield boundaries is minimal for Godunov-type schemes. The mesh resolution
was set to 50m in both the x- and y-directions. Farfield/outflow boundary conditions were used in
the lateral and the top and bottom boundaries were set to solid walls. The initial conditions were
defined by taking the following steps:

1. The domain was initialized for a neutral atmosphere by setting the potential temperature at
300 K.

2. The initial u-velocity and the v-velocity were set to zero.
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3. The temperature profile was defined using the following relation:

T = 300 − yg

cp
(B1)

4. Given the potential temperature field, the Exner pressure, �, was calculated for the entire
domain:

��

�y
= g

�
(B2)

5. Pressure was calculated from the Exner pressure:

�=
(

p

p0

)Rd/cp
(B3)

6. A cold bubble was initialized by adding a perturbation in the temperature field using the
following relation:

�T =

⎧⎪⎨
⎪⎩
0.0 if L>1.0

−15.0

[
cos(�L) + 1.0

2

]
if L�1.0

(B4)

where

L =
√(

x − xc
xr

)2

+
(
y − yc
yr

)2

(B5)

where xc = 0.0 km, yc = 3.0 km, xr = 4.0 km and yr = 2.0 km. Please note that in the earlier
density current simulations the perturbation was added to the potential temperature field.

7. Given the temperature field, potential temperature was re-defined for the entire domain using
Equation (3).

8. Density was initialized using the gas law:

p= �RdT (B6)

The diffusion was added into the solution using a fractional-step method. A constant eddy
viscosity/diffusivity (Km = Kh = K = 75 m2/s) was used for both the momentum and potential
temperature fields. The simulation was run for time= 900s. The potential temperature perturbation
(K), u-velocity (m/s) and v-velocity (m/s) fields at time= 900 s are shown in Figure B1. The
figures show a portion of the actual computational domain from approximately 0 to 16 000 m in
the x-direction and 0 to 6000 m in the y-direction. The simulation results shown in Figure B1
are in good agreement with the Straka benchmark, both qualitatively and quantitatively (see Table
B1). In Table B1, REFC refers to the fully compressible reference solution, REFS is the fully
compressible reference solution on a staggered grid and REFQ is the reference solution using a
quasi-compressible model. All reference solutions (REFC, REFS and REFQ), reported by Straka
et al. [36], were on grids with uniform resolution of 25 m. The statistics reported in Table B1 are
for the right half of the computational domain (shown in Figure B1). The location of the front for
the f-wave solution is in terms of potential temperature and is given by the x-coordinate of the
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Figure B1. Non-linear density current benchmark; potential temperature perturbation (K)—top, u-velocity
(m/s)—middle, and v-velocity (m/s)—bottom. Time= 900 s. Dashed lines indicate negative values.

Table B1. Comparison of the f-wave-Godunov results with the Straka
density current benchmarks.

Variable f-wave REFC REFS REFQ

p′
max (mb) 1.26 2.87 2.49 1.74

p′
min (mb) −6.27 −5.14 −5.55 −5.21

�′
max (K) 8.92E−03 0.00 0.00 0.00

�min(K) −9.82 −9.77 −9.77 −10.00
umax (m/s) 34.44 36.46 35.02 34.72
umin (m/s) −15.74 −15.19 −16.32 −15.31
vmax (m/s) 13.62 12.93 13.28 13.04
vmin (m/s) −16.36 −15.95 −16.11 −16.89
Front location (m) 15 525.00 15 537.44 N/A 15 509.17
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cell in the lowest level with a potential temperature of 299.99 K. The Godunov-f-wave solution
also compares well with other reported solutions of the benchmark (e.g. see [38, 39]).
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